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Abstract

Motivation: The three dimensional organization of chromosomes within the cell nucleus is highly

regulated. It is known that CCCTC-binding factor (CTCF) is an important architectural protein to me-

diate long-range chromatin loops. Recent studies have shown that the majority of CTCF binding

motif pairs at chromatin loop anchor regions are in convergent orientation. However, it remains un-

known whether the genomic context at the sequence level can determine if a convergent CTCF

motif pair is able to form a chromatin loop.

Results: In this article, we directly ask whether and what sequence-based features (other than the

motif itself) may be important to establish CTCF-mediated chromatin loops. We found that motif

conservation measured by ‘branch-of-origin’ that accounts for motif turn-over in evolution is an im-

portant feature. We developed a new machine learning algorithm called CTCF-MP based on word2-

vec to demonstrate that sequence-based features alone have the capability to predict if a pair of

convergent CTCF motifs would form a loop. Together with functional genomic signals from CTCF

ChIP-seq and DNase-seq, CTCF-MP is able to make highly accurate predictions on whether a con-

vergent CTCF motif pair would form a loop in a single cell type and also across different cell types.

Our work represents an important step further to understand the sequence determinants that may

guide the formation of complex chromatin architectures.

Availability and implementation: The source code of CTCF-MP can be accessed at: https://github.

com/ma-compbio/CTCF-MP

Contact: jianma@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Three dimensional organization of the chromosomes in the human

genome is critically important for understanding the principles of

gene regulation and disease mechanisms (Bonev and Cavalli, 2016;

Dekker and Mirny, 2016; Krijger and De Laat, 2016; Sexton and

Cavalli, 2015). Recent high-throughput mapping methods such as

Hi-C (Lieberman-Aiden et al., 2009; Rao et al., 2014) and ChIA-

PET (Fullwood and Ruan, 2009; Tang et al., 2015) have revealed

that higher order genome organizations harbor more complex global

chromatin interactions than we previously thought. One of the most

intriguing examples involves the architectural protein CCCTC-

binding factor (CTCF). In addition to serving as insulator, CTCF is

known to have the capability of forming chromatin loops especially

with the cohesin protein complex (Bonev and Cavalli, 2016;

Handoko et al., 2011; Rao et al., 2014). Through CTCF depletion,

a recent work directly demonstrated that CTCF has critical roles in

forming chromatin loops and establishing insulation between

topologically associating domains (Nora et al., 2017). Importantly,

global mapping data of chromatin interactions based on higher

coverage Hi-C and ChIA-PET both found that the majority of CTCF

binding sites at chromatin loop anchor regions are in convergent

orientation (Rao et al., 2014; Tang et al., 2015), suggesting that

motif orientation may also play key roles in establishing CTCF-

mediated loops. Indeed, a recent study using CRISPR-cas9 showed

that the change of orientation of specific CTCF binding site could

have major impact on long-range chromatin architecture and gene

regulation (Guo et al., 2015).

However, several important questions related to CTCF chroma-

tin loops remain elusive. For example, not all the CTCF binding sites

in the genome form chromatin loops. Even if the CTCF protein

binds to a CTCF binding site on the genome in a particular cell type,

it may not be able to form chromatin loops with other sites.

Furthermore, for a pair of convergent CTCF motifs that are both

bound by the CTCF protein in a particular cell type, it also does not
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always form a chromatin loop. Therefore, the following question

remains: are there other features in addition to CTCF motifs, espe-

cially sequence-based ones, in the genomic context that may be im-

portant to establish CTCF-mediated chromatin loops? Recent

observations showed that various epigenetic marks may provide

clues to predict CTCF loops (Kai et al., 2017). However, the roles of

sequence-based features are still unclear. In this article, we directly

tackle this question. We are primarily interested in revealing the

contribution of sequence-based features that are predictive for the

formation of CTCF-mediated chromatin loops without leveraging

much help from functional genomic signals. The motivation is to

decode potential instructions already encoded in our genome that

govern chromatin organization. Such knowledge is particularly im-

portant when we interpret mutations in human disease genomes.

Specifically, we address the following questions:

a. What are the main sequence level differences between CTCF

motifs that form loops and those that do not form loops?

b. For a certain cell type, can we train a model to predict whether a

pair of convergent CTCF motifs bound by CTCF would form a

chromatin loop in that cell type?

c. Can we train a model based on existing cell type(s) to predict

whether a pair of convergent CTCF motifs bound by CTCF

would form a chromatin loop in a new cell type?

We developed a series of computational methods to approach

these questions. In particular, we designed a new machine learning

algorithm based on word embedding (Mikolov et al., 2013a) to ad-

dress Questions (b) and (c) (see Section 3). Our main contribution is

three-fold: (i) We identified important sequence-level features that

can help distinguish CTCF motifs that form loops and those that do

not. We found that motif conservation measured by ‘branch-of-ori-

gin’ (Yokoyama et al., 2014) that accounts for motif turn-over in

evolution is a very informative feature. (ii) We developed a new ma-

chine learning algorithm, called CTCF-MP, based on word2vec and

boosted trees to demonstrate that sequence-based features have the

capability to predict if a pair of convergent CTCF motifs would

form a loop. (iii) We further demonstrated that we can build an

effective model based on data from existing cell types to predict

chromatin loops formed by convergent CTCF motif pairs in a new

cell type. We believe our work represents an important advancement

in understanding the principles of CTCF-mediated chromatin

loops with the potential to decode information embedded in the gen-

omic sequences that guide the formation of complex chromatin

architectures.

2 Results

We first compared chromatin interaction data from Hi-C and CTCF

ChIA-PET in GM12878 and decided to focus on the ChIA-PET data

to analyze CTCF-mediated chromatin loops in this work. In

GM12878, we identified 92 808 CTCF loops from ChIA-PET data

generated in Tang et al. (2015). For all 112 430 CTCF motifs that

we identified in the human genome (see Section 3), 32 312 (28.7%)

of them completely overlap with the loop regions defined by ChIA-

PET, where 85.1% of these motifs are in CTCF ChIP-Seq peak

regions (650 bp of the ChIP-seq peak summit). In addition, for a

pair of loop regions where each has a unique CTCF motif, 67% of

these paired CTCF motifs are in convergent orientation. These

results are consistent with the previous observations from Hi-C and

ChIA-PET (Rao et al., 2014; Tang et al., 2015). In the Hi-C data

from GM12878, we identified 12 559 CTCF motifs in chromatin

interaction loops and 74.7% of the motifs overlap with CTCF ChIP-

Seq peaks. For all the CTCF motifs in the genome that overlap with

CTCF ChIP-Seq peaks in GM12878 (38 590), 71.3% of them are

involved in ChIA-PET defined loops but only 24.3% of them are

within Hi-C defined loops from Rao et al. (2014). As discussed in

Tang et al. (2015), the specific enrichment of detected loops in

CTCF ChIA-PET experiments is likely to be the reason that led to a

more detailed map of CTCF-mediated loops. Here, we therefore,

focus on the ChIA-PET data to analyze CTCF-mediated chromatin

loops. We call the CTCF motifs that are within chromatin loop

regions ‘loop motifs’; otherwise, we call them ‘non-loop motifs’.

2.1 More ancient CTCF motifs are more likely to be

involved in chromatin loops
We first explored the association between the evolutionary conser-

vation of CTCF binding motifs and their involvement in CTCF

loops. We started by using the mammalian phyloP scores (Siepel

et al., 2006) to look at sequence conservation at base-pair level in

CTCF motifs bound by CTCF (based on ChIP-seq data) in four dif-

ferent cell types (GM12878, K562, HeLa and MCF7). We found

that CTCF motifs in chromatin loops overall have much higher

phyloP scores than non-loop motifs (see Supplementary Fig. S1A).

The average phyloP score of loops is generally three times higher

than non-loops. In particular, the more conserved positions in the

CTCF core motif position weight matrix (PWM) tend to be much

more conserved in loop motifs than non-loop motifs. Specifically,

the average phyloP score on position 4, 5, 7, 10, 13 and 14 for loop

motifs is above 0.8 (see Supplementary Fig. S1A); these positions

have been shown to have important roles in zinc finger binding

(Plasschaert et al., 2014).

The base-pair level conservation analysis led us to further ex-

plore the connection between CTCF motif conservation and its

loop-forming capability. Transcription factor (TF) binding site turn-

over events are prevalent in cis-regulatory sequence evolution

(Odom et al., 2007; Schmidt et al., 2010). We previously developed

a model to quantify the TF binding site conservation by taking turn-

over into account (Yokoyama et al., 2014), with which we assign

the emergence of a lineage-specific TF binding site in the human gen-

ome to a particular branch in the mammalian phylogeny (i.e.

‘branch-of-origin’). We calculated the branch-of-origin of CTCF

loop motifs and non-loop motifs using the approach in Yokoyama

et al. (2014) (see Section 3). We found that there is a significant dif-

ference in branch-of-origin between the two types of CTCF motifs

(see Supplementary Fig. S1B). More ancient CTCF motifs are more

likely to form loops. On all the ancestral branches older than the pri-

mate common ancestor (see Supplementary Fig. S1B), there were

more loop motifs emerging when compared with non-loop motifs.

These results suggest that the CTCF motifs involved in CTCF-

mediated chromatin loops are more conserved evolutionarily than

the motifs that do not form loops. We also showed that the branch-

of-origin score is more informative as compared to phyloP (see

Supplementary Results) and such information provides extra pre-

dictive power in addition to the CTCF ChIP-seq signals (see later

section and Table 2).

2.2 Overview of CTCF-MP—a new algorithm for

predicting CTCF loops
Next, we developed a machine learning approach to predict whether

a pair of convergent CTCF motifs can form a chromatin loop.

Figure 1 illustrates the workflow of our algorithm, named CTCF-

MP, which can be summarized into four steps. (i) We generated
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positive and negative samples based on CTCF ChIA-PET and CTCF

ChIP-seq data from a given cell type. It is important to note that in

CTCF-MP, we focused on convergent CTCF motif pairs that are

bound by CTCF (i.e. within CTCF ChIP-seq peak). As discussed ear-

lier, the majority of CTCF loop motif pairs show convergent orien-

tation. If we consider all CTCF motif pair patterns in the same

dataset without removing non-convergent motif pairs, the perform-

ance of the prediction could be strongly biased because it would be

easy for the classifier to distinguish positive samples from negative

ones by simply using the motif pair directionality as the most im-

portant feature. (ii) We developed a word2vec model (see Section 3)

using CTCF binding motif and its surrounding genomic sequence as

input. Word2vec is a popular word embedding model in natural lan-

guage processing. It reduces the dimensionality of words but keeps

useful information of relationship between words. Here, we utilized

this model to encode DNA sequences into continuous vectors as one

of the features, which had better performance than traditional k-mer

frequency features (see Table 2 later for details). (iii) Features for the

boosted trees classifier consider various sources, including the

word2vec model we trained, additional features (including branch-

of-origin, distance between the motif pair, motif occurrence fre-

quency in the window region and GC content), as well as CTCF

ChIP-seq and DNase-seq signals. (iv) We trained a classifier based

on boosted trees to evaluate our predictions on whether a pair of

convergent CTCF motifs form a loop, for both same cell type predic-

tion and cross cell type predictions. The algorithmic details of

CTCF-MP are discussed in the Section 3.

2.3 CTCF-MP can predict loops formed by convergent

CTCF motif pairs with high accuracy
We evaluated the trained classifier based on boosted trees in

CTCF-MP to distinguish interacting CTCF motif pairs with non-

interacting ones. While numerous machine learning techniques are

designed for the classification problem, we chose some of the widely

used algorithms and made a comparison first. Methods were eval-

uated through 10-fold cross-validation and measured by multiple

metrics. All of the tests were conducted with balanced data from

GM12878 (both positive and negative sample sizes are 21 301) and

the results are in Supplementary Figure S2. Here, we balanced the

dataset by sampling negative data to be the same amount of positive

ones with matching distance. To be more specific, for each positive

sample, we selected a non-duplicated negative sample with similar

distance between two CTCF motifs. We found that boosted trees

had the best performance and was therefore chosen as the classifier

for further analysis. Boosted trees achieved 95.5% AUROC and

95.1% AUPR, suggesting overall strong performance of the boosted

trees classifier used in CTCF-MP. An example is shown in Figure 2

to illustrate the contributions of some features used in CTCF-MP

and the prediction performance. As shown in the figure, most of the

CTCF loops (track ‘Loops in GM12878’) are between CTCF pairs

that are more conserved (more ancient than the primate common

ancestor). Also, CTCF-MP accurately predicts most of the CTCF

loops with fewer false positives and false negatives.

To test whether the classifier is robust for different cell types, we

repeated the evaluation in other three cell types: K562, HeLa, and

MCF7 (both positive and negative sample size: 7969, 9506 and

13 240, respectively, for these three cell types). The dataset and fea-

tures of these cell types were generated and extracted following the

same procedure for GM12878. We again used 10-fold cross valid-

ation for evaluation (see Table 1). We found that overall CTCF-MP

can predict CTCF loops well across cell types, where it has the best

performance on GM12878, and even in the worst case it achieves

90.3% AUROC.

We then asked whether the performance of CTCF-MP varied be-

tween facultative (i.e. more cell type specific) loops and more consti-

tutive loops. We grouped the convergent CTCF loops in GM12878

by the number of occurrences of each loop in all four cell types used

in this study. We then calculated the prediction accuracy from cross-

validation for each group. Note that since we only calculated the ac-

curacy of positive samples, it is equivalent to the recall score in the

cross-validation test. The results are summarized in Figure 3.

We found that, as expected, CTCF-MP performs better for the con-

stitutive loops as compared to more facultative ones. For those

CTCF loops that appear in all four cell types, the accuracy for those

reaches 97.6%. However, even for the ones that only show up in

one cell type, CTCF-MP can still achieve very high accuracy

(>87%).

We did additional evaluation to see if CTCF-MP’s performance

would change if the distance between paired CTCF motifs changes.

We grouped the datasets (both positive and negative samples) by

their distance based on their genomic coordinates and calculated the

average accuracy for these groups. As shown in Supplementary

Figure S5, we found that the performance does not have strong cor-

relation with distance, showing that CTCF-MP has overall strong

power regardless of distance. There are more outliers at the borders

of distance range which can be mainly explained by the lower

amount of data when the distance is either too large or too small.

Overall, these results demonstrated that CTCF-MP can train

an effective model to accurately predict loops formed by convergent

CTCF motif pairs in a single cell type. We also found that it has

strong performance even in highly imbalanced data (see

Supplementary Table S1).

Fig. 1. Overview of the CTCF-MP algorithm
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2.4 CTCF-MP can predict loops formed by convergent

CTCF motif pairs in a new cell type
We then asked if we can train a CTCF-MP classifier based on existing

cell type(s) and predict CTCF loops in a new cell type. We generated

dataset following the same procedure described above, trained the

model with dataset from one cell type, and used dataset from another

cell type as testing data. Here, we require that positive samples in both

training and testing datasets are cell type specific loops (between the

two cell types). The negative samples are also not shared between train-

ing and testing to make sure that training and testing are completely

separate. However, we remark that it is possible that the same pair of

CTCF motifs is positive in one cell type but negative in the other, which

increases the difficulty of this cross cell type prediction task.

We found that CTCF-MP trained with data from one cell type can

accurately predict CTCF loops that are specific in another cell type (see

Fig. 4). In each off-diagonal entry in the figure, the number shows the

AUROC for using data from one cell type (cell1) to train and then test

on data from another cell type (cell2). In the entries on the diagonal, the

AUROC is from cross-validation when training and testing were per-

formed on the same cell type. As mentioned above, CTCF-MP tends to

perform better on more constitutive loops as expected. However, it is

interesting to observe that it also achieved high AUROC for predicting

cell type specific loops. In Figure 5, we show one example of the cross

cell type predictions. To fully illustrate the cross cell type prediction, we

include those shared loops only in the testing set and leave them out in

the training set. It shows that even cell type specific loops can be accur-

ately predicted by CTCF-MP. This suggests that the CTCF pairs that

form chromatin loops have sequence features rather consistent across

cell types, and CTCF-MP can be effectively used to predict CTCF loops

in a new cell type by using both sequence-based feature and selected

functional genomic signals (CTCF ChIP-seq and DNase-seq).

Furthermore, we asked if the performance can be further improved

when we use training data from more than one cell type. We tested this

idea by using data from HeLa, K562 and MCF7 as training data to

build the classifier and GM12878 as testing cell type. Similarly, we

required that there are no shared CTCF pairs in training and testing

data in order to only consider cell type specific CTCF loops that appear

only in GM12878. CTCF-MP reaches 90.8% AUROC, which is better

than the setting where data from only one cell type is used.

We also tested in the whole GM12878 CTCF pair dataset

(imbalanced, positive:negative¼22 432:215 607), after tuning the

threshold to reach the highest F1 score. CTCF-MP reaches 88.7%

accuracy overall. Detailed results can be found in Supplementary

Table S2. Taken together, the results here demonstrated the poten-

tial of CTCF-MP to predict CTCF loops for a new cell type.

Table 1. Evaluation results when applying CTCF-MP to predict

loops from convergent CTCF motif pairs

Accuracy (%) Precision Recall F1 AUROC AUPR

GM12878 88.8 0.869 0.915 0.891 0.955 0.951

K562 82.4 0.788 0.886 0.834 0.903 0.894

HeLa 88.3 0.845 0.939 0.889 0.951 0.942

MCF7 86.3 0.838 0.900 0.867 0.935 0.929

Fig. 2. An example of the prediction from CTCF-MP. In this region (chr1: 62.4 Mb–66.4 Mb), we visualize some features used in CTCF-MP as individual tracks, chro-

matin loops in GM12878 from ChIA-PET, and the predictions from CTCF-MP. ‘CTCF ChIP-seq’ track shows the ChIP-seq peak value for the CTCF motifs in

GM12878. ‘Branch-of-origin recent’ refers to the CTCF motifs derived after the primate common ancestor and ‘Branch-of-origin ancient’ refers to the ones older

than the primate common ancestor. ‘Loops in GM12878’ are the CTCF loops based on ChIA-PET in GM12878. ‘True Positive/False Positive/False Negative’ are the

predictions made by CTCF-MP

Fig. 3. Performance of CTCF-MP over constitutive versus more facultative loops.

‘Occurrence frequency’ indicates the times a loop appears in four cell types
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2.5 CTCF-MP extracts important features for convergent

CTCF motif pairs that form loops
In CTCF-MP, we used word2vec-encoded vector, extra sequence-

based features [branch-of-origin, distance between the motif pair,

GC content, CTCF motif occurrence frequency, matching score to

motif PWM computed by FIMO (see Section 3)] and functional gen-

omic signals from CTCF ChIP-seq and DNase-seq to train the classi-

fier using different features individually and different combinations

of features (see Table 2 for detailed results). Although using all fea-

tures achieves the best performance (AUROC¼95.5%), we found

that features extracted from word2vec alone can still do well for

both AUROC and AUPR. As expected, adding extra features in add-

ition to the word2vec features would gradually improve the per-

formance. In particular, we found that, besides word2vec features,

the branch-of-origin score itself can achieve good predictive power

(AUROC¼76.6%) to distinguish loop-forming convergent CTCF

motif pairs. When branch-of-origin is combined with CTCF ChIP-

Seq signals, we can reach even better performance than using each

feature individually, suggesting that branch-of-origin provides more

information than CTCF occupancy reflected by the ChIP-seq signal

to further distinguish loop-forming CTCF motif pairs. We found

that the sequence-based features alone (word2vecþ all extra

sequence features) can predict CTCF loops based on convergent

CTCF motif pairs without using any functional genomic signals

with high accuracy. In addition, to further demonstrate word2vec’s

ability for encoding DNA sequences, we added comparison between

word2vec encoded vectors and traditional k-mer frequency (k¼6 to

be consistent with what we used in word2vec). We found that

word2vec can reach much better performance than the k-mer

method. Taken together, these results suggest that the sequence-

based features from word2vec and other sequence level features

such as branch-of-origin are informative and complementary to

CTCF ChIP-seq and DNase-seq to predict CTCF chromatin loops.

We further evaluated the importance of each dimension of

word2vec features in the classifier. In each round of the 10-fold

cross-validation, after training the model with word2vec features

only, CTCF-MP estimated feature importance, the information gain

of the feature when it is used in trees, and used the average of it as

the evaluation criteria. In Figure 6A, we show the feature import-

ance across different cell types. Although the actual meaning of each

dimension of word2vec features is difficult to interpret due to the

nature of word embedding, it does show that the most predictive

features are generally consistent across different cell types. We

visualized the distribution of the samples in the vector space that all

our features established. We started by using a deep autoencoder

(Hinton and Salakhutdinov, 2006) to compress the 200-dimensional

space (100 dimensions from each side of the pair) from word2vec to-

gether with the other sequence features we used into a lower dimen-

sional space (32-dimensional). Then we applied Stochastic Neighbor

Embedding (t-SNE) (Maaten and Hinton, 2008) to map the com-

pressed data into a 2D plane. In Figure 6B, x-axis and y-axis form

the 2D plane that t-SNE compressed to, where each point represents

a sample with its color representing the label (either forming loop or

not forming loop). We found that positive samples and negative

samples are clustered mostly together, respectively, based on the fea-

tures from word2vec and other sequence-based features, suggesting

that our CTCF-MP method constructs an efficient vector space for

our classification purpose.

3 Methods

3.1 Data collection
We downloaded the CTCF ChIA-PET data on K562 and MCF7

from the ENCODE project website and CTCF ChIA-PET data on

GM12878 and HeLa from GEO (accession: GSE72816). We also

Fig. 4. Performance of using CTCF-MP for cross cell type prediction. The num-

ber shows the AUROC result for model trained on cell type 1 and tested on

cell type 2

Table 2. The impact of different features and combinations with word2vec features in predicting loop-forming convergent CTCF motif pairs

in GM12878

Accuracy (%) Precision Recall F1 AUROC AUPR

k-mer only 63.0 0.658 0.540 0.593 0.680 0.647

word2vec only 70.5 0.656 0.864 0.746 0.796 0.776

word2vec þ all extra seq. features 80.4 0.769 0.869 0.816 0.893 0.889

word2vec þ all extra seq. features þ ChIP-seq and DNase-seq 88.8 0.869 0.915 0.891 0.955 0.951

CTCF ChIP-seq and branch-of-origin 79.4 0.806 0.773 0.790 0.880 0.850

CTCF ChIP-seq only 77.4 0.776 0.771 0.773 0.849 0.802

DNase-seq only 72.6 0.757 0.667 0.709 0.791 0.739

ChIP-seq and DNase-seq 78.6 0.787 0.786 0.786 0.863 0.826

all extra seq. features only 77.2 0.772 0.772 0.772 0.862 0.862

distance only 54.0 0.727 0.126 0.214 0.565 0.587

branch-of-origin only 67.3 0.800 0.462 0.586 0.766 0.755

All extra sequence features include branch-of-origin, distance between motif pairs, GC content, motif occurrence between paired motifs and matching score to

motif PWM.
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downloaded CTCF ChIP-Seq peaks and DNase-seq peaks from

ENCODE. Mammalian phyloP scores were downloaded from the

UCSC Genome Browser. The known human CTCF motif PWM was

obtained from JASPAR (ID: MA0139.1) (Khan et al., 2018). We

used FIMO (Grant et al., 2011) to scan all CTCF motifs in the

human genome. We used the default parameters and a p-value 1e-5

as threshold. We overlapped these motifs with long-range inter-

action peak regions (called from ChIA-PET) to define loop motifs

and non-loop motifs.

3.2 The CTCF-MP algorithm
3.2.1 Training and testing datasets in CTCF-MP

We defined positive and negative samples for the machine learning

module in CTCF-MP as follows. We considered motif pairs (that are

bound by CTCF) with convergent orientation only (for both positive

and negative cases). For unique CTCF motifs within the ChIA-PET

detected loop regions, the motif pairs were considered as positive

samples. If there were more than one motif in either side of the

paired ChIA-PET loop region, those motifs were not included in the

classification (i.e. they were considered neither as positive samples

nor as negative ones). In other words, we defined positive samples as

the following: in a ChIA-PET defined loop, on either side of the

paired regions there is a unique CTCF motif bound by CTCF. We

then estimated the distance distribution of positive samples by calcu-

lating a range that can cover 95% of the positive samples, which

was then used as the distance for generating negative samples.

Negative samples were those motif pairs within the distance range

but were not in the positive samples, i.e. they did not form loops.

We then sampled negative samples with similar distance distribution

as positive ones. The main reason of this approach is to minimize

the contribution of distance between a pair so that we can focus on

understanding other features.

We hypothesized that whether two CTCF motifs could form a

chromatin loop depends on both the features they have individually

and the features they share. We grouped the negative samples into

four categories depending on whether those two CTCF motifs are

loop motifs or not. We trained our model with a softmax loss func-

tion for multi-classification. But when we evaluated the algorithm,

we combined the four negative labels into one and used binary

Fig. 5. An example of the cross cell type prediction from CTCF-MP. The highlighted box in the figure shows cell type specific loop in HeLa that is correctly pre-

dicted by CTCF-MP based on trained model from GM12878 ChIA-PET data. ‘GM12878/HeLa CTCF ChIP-seq’ track shows the ChIP-seq peak value for the CTCF

motifs in GM12878 and HeLa, respectively. ‘Loops in GM12878/HeLa’ shows the CTCF loops based on ChIA-PET in GM12878 and HeLa, respectively. ‘True

Positive/False Positive/False Negative’ are the predictions in HeLa made by CTCF-MP where the classifier is trained in GM12878

Fig. 6. (A) Feature importance of word2vec features across different cell

types. (B) Visualization using t-SNE based on word2vec features and other se-

quence-based features we used in CTCF-MP
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classification metric to evaluate the performance. For all the evalua-

tions, we used 10-fold cross-validation to train and test our method.

3.2.2 The word2vec model in CTCF-MP

From the recent development of learning word embedding

approaches in the field of natural language processing, word2vec,

which uses distributed representation of words in a continuous vec-

tor space, has been proven to be an effective method to reduce the

high dimensionality of word representations in contexts (Mikolov

et al., 2013a). Word2vec is a two-layer neural network that learns

embedding vectors for words in the text corpus. The main idea is

that we can encode words within a text corpus by establishing po-

tential interactions between the word and its contexts to discover

important patterns in natural language. In such a model, words are

embedded in a continuous vector space where ‘semantically similar’

words have closer vectors. The basic idea for training such a model

is that words that appear in the same contexts share semantic mean-

ing. Thus, words and their contexts from the corpus are used as

positive samples to train a model through multiple ways. Here, we

utilized word2vec to train a distributed representation and encoding

for DNA sequences. Word2vec has been utilized before in other con-

text for extracting DNA sequence features (Asgari and Mofrad,

2015) and we recently used an approach based on word2vec to pre-

dict enhancer-promoter interactions (Yang et al., 2017). We consid-

ered subsequences of fixed length k as DNA ‘words’ (also referred to

as k-mers). The collection of all possible k-mers was defined as the

vocabulary (size of vocabulary¼4k). We then used a k sized sliding

window to scan sequence with the CTCF motif as well as its flank-

ing region with step size 1 to build a DNA ‘sentence’ (see

Supplementary Table S3 for examples of the terms mentioned here).

After we built DNA sentences based on the CTCF motifs and

their flanking regions, we used them as training data for word2vec

to build a Continuous-Bag-of-Words (CBOW) model (Mikolov

et al., 2013b) for establishing a representation vector space for DNA

sequences. A CBOW model aims to predict a word from its neigh-

bors, and the parameters of the model can be presented as a matrix

of V�N, where V is the size of vocabulary and N is the dimension-

ality of the embedded feature space. After we trained the model,

each row of the learned parameters can be regarded as the embed-

ding vector for a specific k-mer word. The probabilistic model for

this problem is trained by maximizing the probability of target word

wt given the context c, i.e.

arg max
h

Y
ðwt ;cÞ2D

pðwtjcÞ (1)

pðwtjcÞ ¼ softmax ðscoreðwt; cÞÞ ¼
exp ½scoreðwt; cÞ�P

exp ½scoreðw0; cÞ� (2)

where D is the set of all pairs of word and context in the sequences,

scoreðwt; cÞ computes the compatibility of words (e.g. using a dot

product) and w0 represents all possible words in the vocabulary.

However, such a language probabilistic model is computationally

very inefficient. Word2vec uses a technique called negative sampling

(Goldberg and Levy, 2014), which trains a binary classification

model to discriminate the real target word wt from ‘noise’ words ~w,

given the same context c. Noise words are sampled from noise distri-

bution estimated from the text corpus (in our case, sequences). In

other words, positive samples are those pairs of word and context

that have appeared in the sequences while negative samples

are those that have not. The model is trained by maximizing an ob-

jective function that achieves higher score when the model assigns

high probabilities to the real words and low probabilities to noise

words, i.e.

Y
ðwt ;cÞ2D;ð ~wi ;cÞ2D0

PhðD ¼ 1jwt; cÞ �
Ym
i¼1

PhðD ¼ 0j ~wi; cÞ
" #

(3)

PhðD ¼ 0j ~wi; cÞ ¼ 1� PhðD ¼ 1j ~wi; cÞ (4)

where D is the set of all pairs of word and context in the positive

samples, D0 is the set of negative samples, and PhðD ¼ 1jwt; cÞ is the

probability that the word and context pair ðwt; cÞ is observed in

positive samples for the learned parameter vector h. The objective

function scales only with the number of m noise words instead of all

words in the vocabulary.

After training the word2vec model, we have the embedding vec-

tors for each DNA word. To put it in another way, we can have a

hash table with its keys as DNA words and its values as vectors. We

then encoded DNA sequences by having the embedding vectors for

every DNA word in the DNA sentence and taking the average of the

vectors as the vector for the DNA sequence. In CTCF-MP, we set

k¼6 as the word length, N¼100 to be the dimensionality of the

embedded features, and 6250 bp of the motif as the flanking region,

by balancing the amount of sequence patterns, we would like to

model and computational cost.

3.2.3 Additional features in CTCF-MP

After encoding DNA sequences into vectors, we selected other fea-

tures based on some prior knowledge and our own observations

(e.g. branch-of-origin of CTCF motifs). To capture the sequence-

based information on whether a CTCF motif has the ability to form

loops, we included the following features: branch-of-origin of CTCF

motifs, CTCF motif matching score to the motif PWM, GC content,

distance between motif pairs, motif occurrence in the genomic re-

gion between CTCF motif pair. In addition, we also included signals

from CTCF ChIP-seq and DNase-seq of the regions under

consideration.

3.2.4 Boosted trees classifier in CTCF-MP

In the classification step, we considered all the features from word2-

vec modeling step together with the additional features as input for

a boosted tree classifier. Like other ensemble learning methods,

boosting aims to combine a set of weak learners to be a stronger

classifier (Schapire, 1990). The core idea of boosting is to iteratively

train models that add more weight to the misclassified samples and

thus ultimately achieve a better classifier. A decision tree is typically

used as the weak learner in boosting algorithms and has both great

performance and high efficiency.

In CTCF-MP, we used the gradient boosting algorithm

(Friedman, 2002). For this multi-classification setting, the algorithm

tries to minimize the softmax loss function. In each iteration stage of

gradient boosting, it improves the existing model by adding an extra

estimator to it. The process repeats until it reaches the maximum it-

eration rounds or convergence. For this 5-class problem (as dis-

cussed earlier, one positive type and four negative types) with

training set fðx1; y1Þ; . . . ; ðxN ; yNÞg; yi 2 f0;1;2; 3; 4g, the loss func-

tion of iteration stage m is as follows:

L yj;Fj;m xð Þ
� �4

j¼0

� �
¼ �

XN
i¼1

X4

j¼0

I yi ¼ jð Þ � log r Fj;m xið Þ
� �� 	( )

(5)
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where

r Fj;m xð Þ
� �

¼
exp Fj;m xð Þ

� �
P4

l¼0 exp Fl;m xð Þ
� � (6)

where Fj;m represents the learned model for class j on stage m.

Iðyi ¼ jÞ is the characteristic function that equals 1 when yi¼ j. In step

m, the algorithm would fit five decision trees hj;mðxÞ; j ¼ 0; . . . ;4

to predict residuals for each class on the probability scale. If each

tree has K nodes, with corresponding regions fRkjmg;k ¼ 0; . . . ;

K� 1; j ¼ 0; . . . ;4, the model updates as follows:

½Fj;mðxÞ�4j¼0 ¼ ½Fj;m�1ðxÞ þ cj;mhj;mðxÞ�4j¼0 (7)

where

cj;m ¼ arg min
c

X
x2Rkjm

Lðyi;FmðxÞ þ Fj;m�1ðxÞ þ cj;mhj;mðxÞÞ (8)

and

hj;m ¼
XK�1

k¼0

bkjmIðx 2 RkjmÞ (9)

where bkjm is the value predicted in region Rkjm. In CTCF-MP, we used

XGBoost (Chen and Guestrin, 2016), which is an excellent boosting im-

plementation. XGBoost can train the model by multi-thread operation

and has rather high performance and robustness to over-fitting.

3.3 Method to calculate branch-of-origin
For each CTCF binding motif occurrence, we obtained 6100 bp

orthologous sequence centered on the human CTCF binding site

across mammalian species using the Multiz alignment available on

UCSC genome browser. Next, motif occurrence in 200 bp multiple

sequence alignment block across different species were counted. We

then applied the birth-death model initially described in Yokoyama

et al. (2014) to predict the branch-of-origin of each CTCF motif oc-

currence in human. See Yokoyama et al. (2014) for the details of the

method that models cis-regulatory element evolution.

4 Discussion

In this work, we developed effective computational methods to ad-

dress several important questions related to CTCF-mediated chro-

matin loops. One of our main motivations is to evaluate the

contributions of sequence-based features already encoded in the gen-

ome that may provide instructions to determine CTCF chromatin

loops. Our results allow us to answer the three questions we pro-

posed at the beginning:

a. We found that motif conservation measured by ‘branch-of-ori-

gin’ that accounts for motif turn-over in evolution is an inform-

ative feature to distinguish loop motifs from non-loop motifs.

b. For an individual cell type, we can train a CTCF-MP classifier

(based on word2vec and boosted trees) to accurately predict

loops formed by convergent CTCF motifs bound by CTCF using

both sequence features as well as CTCF ChIP-seq and DNase-

seq. In particular, we found that sequence-based feature alone

have strong capability to predict if a pair of convergent CTCF

motifs would form a loop.

c. We can train a CTCF-MP classifier based on data from existing

cell type(s) to effectively predict whether a pair of convergent

CTCF motifs would form a loop (including cell type specific

loops) in a new cell type.

Our work offers important new insights in the sequence-based

features underlying loop formation between a pair of CTCF motifs.

In the recent work from Kai et al. (2017), the authors found that epi-

genetic marks together with CTCF motif occurrences can be used to

predict chromatin loops between a pair of convergent motifs.

However, there are several main differences in our work: (i) In this

article, we focus mainly on the contributions of sequence-level fea-

tures in forming loops. Our work demonstrated CTCF-MP’s poten-

tial to predict CTCF loops for cell types without many functional

genomic datasets. (ii) It is known that the majority of CTCF loops

have convergent motif orientation and the distance is one of the

most discriminative features in deciding whether CTCF motif pairs

would form a loop. Kai et al. (2017) did not specifically consider

this factor. We carefully prepared the data to reduce the contribu-

tion of distance to the model, such that we can discover other more

important and novel features.

There are a number of areas that our methods and approaches

can be further improved to reveal a more complete picture of CTCF-

mediated chromatin loops. For example, at the moment, we focus

on convergent CTCF motif pairs as those are the ones that have

been consistently observed in both Hi-C data and ChIA-PET data.

However, in Tang et al. (2015), the authors reported that in addition

to convergent pairs there are also about 33% of motif pairs among

detected CTCF loops that are ‘in tandem’. We have made initial

evaluation on CTCF-MP’s performance to predict loops formed by

tandem CTCF motifs (see Supplementary Results and Tables S4 and

S5). It would be useful to further explore the differences in sequence

features of the pairs in tandem and compare with convergent ones

and understand their functional importance. In addition, one limita-

tion in the methodology of our CTCF-MP algorithm now is that the

features from word2vec are hard to interpret due to the difficulty in

clearly explaining the embedded space (in fact, the same challenge

also exists in the field of natural language processing even though

word2vec has been successfully applied in NLP) (Goldberg and

Levy, 2014). Usually, visualization algorithms such as t-SNE can be

used to provide an idea of the embedded space. Nevertheless, our

evaluation demonstrated that our word2vec features alone can al-

ready predict loop-forming convergent motif pairs with quite good

performance. It is also encouraging that with the additional

sequence-based features (such as branch-of-origin) that are not cap-

tured by word2vec model, CTCF-MP achieves high performance in

prediction without functional genomic signals from ChIP-seq and

DNase-seq. Overall, we believe our methods and results made an

important step further in our understanding of the principles of

CTCF-mediated chromatin loops. CTCF-MP could be particularly

useful when we prioritize and interpret mutations in human disease

genomes (e.g. for a better understanding of somatic non-coding

mutations in tumor genomes). The insights from our work also have

the potential to help decode information encoded in our genome

sequences that determine complex chromatin architectures.
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